

Continue

Hardness of Water Determination through Complexometric Titration Visual Abstract Hard water refers to water containing a considerable number of cations that form precipitates with anions like sulfate, carbonate, and soap. The presence of metals such as aluminum, manganese, iron, and zinc in water due to its polarity and hydrogen-bonding properties makes it an excellent solvent. In the Madison area, hard water is a major concern, resulting from mineral deposits formed by ionic reactions between cations in solution, leading to insoluble precipitates. When heated, Ca^{2+} ions react with bicarbonate ions to form insoluble calcium carbonate, known as scale, which can coat vessels and produce mineral deposits on dishes and in water pipes. High levels of hardness can cause deposits to build up inside pipes, reducing or blocking the flow of gas, and increasing building pressures to dangerous levels. Hardness is measured in ppm CaCO_3 , despite other metal ions contributing to it, primarily due to tradition and Ca being 95% of the contributor. Soft water is typically defined as containing less than 40 ppm CaCO_3 , while hard water contains more than 150 ppm CaCO_3 . To determine the hardness of a water sample using complexometric titration, EDTA (Ethylenediaminetetraacetic acid) and its sodium salts are used as a complexing agent. The procedure is faster and more convenient than gravimetric analysis, but results may be limited to non-specific analysis of metals at fairly high concentrations. The compound's complexation reaction utilizes Y^{4-} in its basic form, necessitating an experiment at a basic pH. This can be challenging since some anions precipitate out of solution at high pHs. You will explore this further in the pre-laboratory exercises. Calmagite indicator solution is used to detect the titration endpoint. It exhibits a wine-red color when bound to calcium and magnesium ions at pH 10 (Figure 2). The procedure involves adding a small amount of Mg-EDTA solution, which sharpens the endpoint by displacement Ca^{2+} and Mg^{2+} . As EDTA binds metal cations, it competes with calmagite-bound metals. The reaction forming colorless HIn^{2-} (blue) occurs rapidly at the endpoint: $\text{In}^{3-}(\text{colorless}) + \text{H}_2\text{O} \rightleftharpoons \text{HIn}^{2-}(\text{blue}) + \text{OH}^-$ (2). This is detected colorimetrically by the change from wine-red to clear blue. EDTA reacts with metal cations and displacement titration technique. Understanding the chelation reaction and EDTA's interaction with metal cations is crucial for this experiment. The EDTA solution should be prepared well in advance, as it takes time to dissolve. Aliquot preparation should be done before starting the experiment. Data table: | Volume of Aliquot (mL) | Volume of EDTA to titrate CaCO_3 Solution (mL) | - | - | 25.00 | 28.51 | 25.00 | 22.81 | 25.00 | 19.96 | Proposed reason for the decrease in EDTA: The slow solubility of EDTA and its hydrophobic properties may cause it to precipitate out of solution over time, affecting the titration results. To dissolve CaCO_3 , add 60 mL of 1 M NH_4OH . Use HCl to moderate to neutralize the acid in step two. Standardize the EDTA solution by mixing it thoroughly before filling the buret. Pipet 25 mL of standard calcium solution into a 250 mL Erlenmeyer flask and add buffer solution, Mg (II)-EDTA reagent, and calmagite indicator. Titrate the sample with EDTA titrant until the last reddish tint disappears, adding drops at intervals. The endpoint is a crisp blue color with no red or purple hue. Use a timer or fluorescent light to ensure accuracy. To determine the hardness of an unknown sample, a repetitive titration of the sample to a volumetric flask and dilute it with deionized water. Pipet 50 mL of this solution into an Erlenmeyer flask and titrate before, adjusting the procedure according to the procedure in step two. Standardize the EDTA solution with a 10 mL aliquot of CaCO_3 . In step four, the sample volume is double that used in step three; does this change the expected volume of titrant? Fill out the data sheet according to experiment. Challenging questions: Suppose your lab has a limited amount of the reagents and pipetted 10 mL of Mg-EDTA reagent. Must you start over with a new sample? If so, explain the type of error that will occur. Lab report submission guidelines have been introduced in conjunction with a measurement-based exercise that takes into account potential mistakes and their effects on water hardness readings. To submit the lab report, combine all required documents into one PDF file and upload it to Canvas. This should include completed answer sheets, relevant lab notebook pages with answers to post-lab questions and challenge questions. A grading rubric is available on Canvas for reference. References to Yappert's work (1997) and Harris and Lucy's "Quantitative Chemical Analysis" book (2020 edition) are also noted. Any inconsistencies or errors can be reported through a provided Google form, but please direct specific questions to the instructor or TA as comments cannot elicit responses. A license agreement is in place for ASTM products; by accessing these materials, users acknowledge they have read and agree with its terms. The agreement emphasizes ownership rights, defining individual, single-site, and multi-site licenses, and outlining permitted uses under a limited license. 1. Licensee may access and download an electronic file of a Document (or portion of a Document) for temporary storage on one computer for viewing purposes only; 2. Individual Documents downloaded may not be sold or resold; instead, they can be shared with other Authorized Users within the organization's computer network for internal use. 3. Licensee must authenticate and verify access to ensure only Authorized Users can access the ASTM Product, providing a list of authorized IP addresses and sites as required. 4. Prohibited uses include sharing the product or documents with anyone outside of another Authorized User, transmitting, copying, or distributing any Document without prior express written permission from ASTM. 5. The electronic file may not be distributed over computer networks or shared via email; single hard copy prints can only be distributed to others for internal use within their organization. 6. Licensee is permitted to provide hard copies of individual Documents to students in a class at the Licensee's location, and display, download, and distribute hard copies for training Authorized Users. Licensees cannot create derivative works or charge for copies of materials from ASTM products without permission; downloading substantial portions is also restricted. They cannot utilize ASTM products for commercial purposes, including selling documents or imposing special charges on authorized users. Licensees must include proper copyright notice and prevent prohibited uses. If breaches occur, ASTM can terminate the license and deny access to the product. The ASTM Products are available to Licensee and its Authorized Users upon acceptance of this Agreement. To view the products, a web browser is required, along with necessary software licenses. The ASTM disclaims all warranties, including merchantability and fitness for purpose, except where such disclaimers are invalid due to law.

Hardheid. Analysis of hardness of water from different sources. Total hardness of water analysis. Analysis of hardness of water samples project. Analysis of water samples for hardness and alkalinity. Hardheid van water. Hardheid van water bepalen. How to detect hardness of water. Hardness of water analysis procedure. Hard water scheikunde.